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The breaking of internal waves propagating in a stratified fluid of constant buoyancy
frequency on a sloping boundary was investigated numerically. It was found that at
the boundary, nonlinear non-resonant interactions between the incident and reflected
waves produced higher-mode waves. These modes had frequencies greater than the
local buoyancy frequency and so could not radiate from the interaction region. The
energy level of trapped waves increased with time and subsequently led to overturning
of the density field. At the critical frequency, when the reflected wave propagated in
a direction parallel to the slope, wave overturning occurred near the wall, but the
point of overturning moved off the bottom as the propagation angle changed away
from that of the bottom slope as the waves became increasingly supercritical. The
internal wave reflection coefficient generally increased as the effects of nonlinearity
and viscosity decreased, but depended strongly on the forcing frequency and the angle
of the sloping boundary.

1. Introduction
Internal wave reflection from a sloping boundary has been well documented (e.g.

Phillips 1977) and its importance as a source of energy for turbulence in the benthic
boundary layer in lakes, oceans and estuaries has also been pointed out in connection
with field observations (Armi 1978; Gregg & Sanford 1980; Eriksen 1982, 1985,
1995; Thorpe 1987; Imberger 1989; Ledwell & Watson 1991), laboratory experiments
(Phillips, Shyu & Salmun 1986; Ivey 1987; Ivey & Nokes 1989; Salmun, Killworth &
Blundell 1991; Taylor 1993; Ivey, De Silva & Imberger 1995; De Silva, Imberger &
Ivey 1997) and from analytical and numerical studies (Eriksen 1982, 1985; Garrett
1990; Slinn & Riley 1996).

In linear and inviscid theory (Phillips 1977; Imberger 1994), the following solutions
for the velocity components can be found for a two-dimensional internal wave train
propagating downwards in a linearly stratified fluid in which the buoyancy frequency
N is constant:

v = q sin (α) cos (kx+ my − ωt) = q sin (α) cos (φ), (1.1)

u = −q cos (α) cos (kx+ my − ωt) = −q cos (α) cos (φ), (1.2)

p = −ρoqcp cot (α) cos (kx+ my − ωt) = −ρoqcp cot (α) cos (φ), (1.3)

where u and v are the horizontal and vertical velocities in the x- and y-directions, p
is the pressure, q is the maximum particle speed along the ray, α is the angle of the
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rays to the horizontal, k and m are the horizontal and vertical wavenumbers, ω is the
wave frequency, cp is the phase speed,

cp =
ω√

k2 + m2
, (1.4)

and α is the angle of the ray to the horizontal given by the dispersion relationship

sin α =
ω

N
=

k√
k2 + m2

. (1.5)

This wave energy will be reflected at a sloping wall (figure 1) and the combined
velocity field of the incident (subscript i) and the reflected (subscript r) waves may be
written as

v = qi sin (α) cos (φi)− qr sin (α) cos (φr), (1.6)

u = −qi cos (α) cos (φi)− qr cos (α) cos (φr). (1.7)

The boundary condition at the sloping wall requires the normal velocity to vanish so
that

v cos β − u sin β = qicos (φi) sin (α+ β)− qr cos (φr) sin (α− β) = 0, (1.8)

where β is the angle of the wall to the horizontal. We wish to obtain a standing wave
in the normal direction, therefore

qi sin (α+ β) = qr sin (α− β). (1.9)

Equation (1.8) becomes

cos φi − cos φr = 0, (1.10)

which yields

∆φ = φr − φi = 0, (1.11)

indicating that there is no phase shift introduced on reflection. This is in contrast to
observations of reflection at a caustic, where the waves experience a phase shift of
π/2 (Javam, Imberger & Armfield 1999a).

The energy transported by the incident wave through a horizontal surface in one
wavelength, averaged over one period T , is obtained from

Ei =

∫ 2π/ki

0

∫ T

0

pivi dη. (1.12)

Using (1.1) and (1.3) leads to

Ei =
π

ki
ρoq

2
i cpi cos β, (1.13)

where cpi is the phase velocity of the incident wave. Therefore, substituting from (1.9)
yields a value for the reflection coefficient:

Cr =
Er

Ei
= 1. (1.14)

Hence, in linear theory energy is conserved during the reflection process. Now consider
the energy density Edr of the reflected wave

Edr = 1
2
ρoq

2
r = 1

2
ρoq

2
i

|kr|
|ki| , (1.15)
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so that
Edr

Edi
=

sin (α+ β)

sin (α− β)
, (1.16)

which clearly shows that as α approaches β, the energy density of the reflected wave
increases. Thus, a small-amplitude incident wave may give rise to a large-amplitude
reflected wave leading to nonlinear behaviour and ultimately wave overturning, an in-
creased rate of strain and energy dissipation near the reflection site; when the reflected
rays are parallel to the sloping boundary (α = β), the amplification approaches infinity.

Ivey et al. (1995) reported laboratory experiments in continuously stratified fluids
to study internal wave breaking on a 20◦ bottom slope over the frequency range of
0.5 < ω/ωc < 2.5 where ωc is the critical frequency. Using observations and (1.13),
they obtained the following expressions for the average dissipation over one wave
cycle within the benthic boundary layer region:

ε = (1− Cr)
(

3q2

4πN

)
sin 4β cos β, (1.17)

where the reflection coefficient Cr = 1 for perfect reflection.
De Silva et al. (1997) conducted an experimental study using a parameter range

covering subcritical (backward reflection when the wave frequency ω < N sin β), criti-
cal (when the wave frequency ω = N sin β) and supercritical (forward reflection when
the wave frequency ω > N sin β) frequencies in order to characterize the turbulence
generated by an internal wave breaking on a sloping bed. They used a small width
of the incident wave ray compared to the bed length and their observation showed
that, near the critical condition, the instabilities were first initiated close to the bed.
As the incident waves became progressively either subcritical or supercritical, the
initiation of the instabilities occurred away from the slope. De Silva et al. (1997) also
observed a horizontal viscous–buoyancy intrusion propagating out from the region of
impingement of the internal waves on the bottom along the constant isopycnal surface.

The aim of this paper is to explore the nature of the nonlinear processes induced by
internal wave breaking on a sloping boundary, to determine the reflection coefficient,
to examine the distribution of the wave energy near the reflection region and finally to
estimate typical dissipation values via (1.17). We focus our attention on the initiation
of breakdown, where our two-dimensional model appears to successfully reveal the
nature of the instability.

2. Governing equations and numerical model
The conservation of momentum, mass and volume, under the Boussinesq approx-

imation, can be expressed in non-dimensional form as follows (see Javam, Imberger
& Armfield 1999b):

∂u

∂t
+Ke

[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ Re−1∇2u, (2.1)

∂v

∂t
+Ke

[
u
∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
− ρ+ Re−1∇2v + sin (t)f(x, y), (2.2)

∂ρ

∂t
+Ke

[
u
∂ρ

∂x
+ v

∂ρ

∂y

]
= Ri v + Re−1Pr−1∇2ρ, (2.3)

∂u

∂x
+
∂v

∂y
= 0, (2.4)
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where

Ri =
(−g/ρo)(dρ̂/dy)

ω2
=

[
N

ω

]2

, Ke = Fkxω
2,

P r =
ν

κ
, Re =

ω

k2
xν
, ∇2 =

∂2

∂x2
+

∂2

∂y2
,

 (2.5)

and where N =
(
(g/ρo)|dρ̂/dy|)1/2

is the buoyancy frequency, u and v are the
fluctuating velocity components in the directions x and y respectively, t is the time, ρ,
ρ̂ and ρo are the fluctuating, background and reference densities respectively, ν is the
coefficient of kinematic viscosity, κ is the coefficient of thermal diffusivity, f(x, y) sin t
is the momentum source used to generate internal wave beams, ω is the frequency
of the momentum source, f(x, y) is the dimensionless localization function, F is the
amplitude of the momentum source, and kx is the horizontal wavenumber of the
standing wave-like momentum source.

The localization function f(x, y) is given by

f(x, y) =


cos (x− xl) exp (−300|y − yl |3)/4 if |x− xl |6 π
{cos (x− xl) exp (−300|y − yl |3)}/8 if π < |x− xl |6 3π/2

0 otherwise,

(2.6)

in which xl and yl are the horizontal and vertical non-dimensional locations of the
momentum source respectively.

To solve the equations numerically, it is advantageous to rotate the coordinate
system so that the x′-axis is directed along the sloping boundary and y′ is normal to
x′. The following equations are for a coordinate system rotated through angle β; the
primes have been dropped from the equations for convenience:

∂u

∂t
+Ke

[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
− ρ sin β + Re−1∇2u+ sin (t)f(x, y) sin β, (2.7)

∂v

∂t
+Ke

[
u
∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
− ρ cos β + Re−1∇2v + sin (t)f(x, y) cos β, (2.8)

∂ρ

∂t
+Ke

[
u
∂ρ

∂x
+ v

∂ρ

∂y

]
= Ri(u sin β + v cos β) + Re−1Pr−1∇2ρ, (2.9)

∂u

∂x
+
∂v

∂y
= 0. (2.10)

The function f(x, y) in new coordinate system becomes

f(x, y) =


cos (2πxf) exp (−300|yf |3)/4 if |x− xl |6 π
{cos (2πxf) exp (−300|yf |3)}/8 if π < |x− xl |6 3π/2

0 otherwise,

(2.11)

where xf = (x− xl) cos β − (y − yl) sin β, yf = (x− xl) sin β + (y − yl) cos β.
The equations of motion (2.7)–(2.9) were solved using a simple scheme (Patankar

1980) on a non-staggered grid with a third-order quick discretization for the advective
terms and second-order Crank–Nicolson time integration (Armfield 1991, 1994). An
open boundary based on the Sommerfeld radiation condition was developed allowing
waves to propagate through the boundaries with minor influence on the interior
solution. A no-slip boundary condition was used for the sloping boundary. For a
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α 30, 40, 45, 50

β 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80

Re 105, 5× 104, 2.5× 104, 2× 104, 1.8× 104, 104, 5× 103

Ke 0.0001, 0.0015, 0.02, 0.3, 0.35, 0.5, 0.7

Ri 1.7, 2.0, 2.42, 4.0

Pr 7

Table 1. Parameters used in the numerical simulations.

detailed description of the mathematical and numerical method and open boundary
conditions, see Javam et al. (1999b).

The simulation domain of non-dimensional size 22π × 20π consisted of uniform
cells in the x-direction with non-dimensional size of ∆x = 0.1π and variable cells in
the y-direction arranged to have higher resolution in the region of high shear. The
mesh size at the wall was ∆y = 0.01π and was stretched at the rate of 3% per cell
until reaching ∆y = 0.1π, after which the stretching was eliminated. The parameters
used in the simulations are listed in table 1.

A momentum source having a width of 1.5 non-dimensional wavelengths was
placed in the computational domain at 0.35Lx in the horizontal direction and was
varied between 0.35Ly and 0.5Ly to keep the ray away from the corners. Lx and Ly
are the length and width of the computational domain, respectively.

3. Results
Figures 1(a) and 1(b) illustrate the basic geometry, the computational domain

and the boundary conditions used in the problem. Internal wave rays were generated
using a localized standing wavelike momentum source with frequency ω. The angle of
propagation of the rays depended upon the momentum source frequency ω, and the
background density stratification according to the dispersion relation ω = N sin α. In
this section we present results from numerical experiments for supercritical, subcritical
and critical cases.

3.1. Wave–boundary interaction

3.1.1. Reflection process through a total cycle

The waveforms of the internal wave before and after the reflection as shown
in figure 1(b) are plotted in figures 2 and 3; the horizontal and vertical axes are
in terms of the non-dimensional length and velocity scale, respectively. In these
plots the x-direction is perpendicular to the centreline of the lower right cross-arm
before reflection, and again after the reflection. Thus, it is directed downwards before
reflection and upwards after reflection. It follows that the phase velocity vector is
pointing in the direction of increasing x. Figure 2 shows the reflection process through
a wave cycle. Reflected and incident waves are in phase and have the same frequency,
while the amplitude and wavenumber of the wave are amplified upon the reflection.

To examine the effect of viscosity and nonlinearity on the reflection process, simula-
tions were performed using different Reynolds (Re) and Keulegan (Ke) numbers. The
non-dimensional parameters were chosen as follows: Pr = 7, Ri = 2, Re = 10× 104,
5×104, 2×104, 1×104 and 0.5×104, and Fr = 0.0001, 0.02, and 0.3. Results indicated
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Figure 1. (a) Density contours and the geometry of internal wave reflection from the sloping
boundary; α = 40, β = 20, Ri = 2.42, Ke = 0.5, Pr = 7, Re = 25 000. Note the change in
wavenumber and wave-amplitude magnitudes on reflection. (b) Velocity vector plot; α = 45, β = 10,
Ri = 2, Ke = 0.0001, Pr = 7, Re = 100 000. The cross-sections of incident and reflected waves are
taken along the lines shown in this figure.
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Figure 2. The waveforms of the internal wave before and after the reflection; α = 45, β = 10, Ri = 2,
Pr = 7. The frequency of the ray is preserved upon the reflection. In these plots the y-direction
is along the group velocity and the phase velocity is pointing in the direction of increasing x. (a)
T = 17.0, (b) T = 17.25, (c) T = 17.5, (d) T = 17.75, (e) T = 18.0.

that the reflected and incident waves remain in phase throughout the parameter range
(figure 3); these results are in agreement with linear theory (equation (1.11)). The re-
flection mechanism at sloping boundaries is thus similar to reflection at a turning
point, but differs from that found in caustic reflection where a phase shift of π/2
occurs (Javam et al. 1999a)

3.1.2. Nonlinearity and viscosity effects on the reflection coefficient

A reflection coefficient Cr defined as

Cr =

∫ Raywidth

prqr dη∫ Raywidth

piqi dη

(3.1)
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Figure 3. The waveforms of the internal wave before and after the reflection; α = 45, β = 10, Ri = 2,
Pr = 7, T = 17. No phase shift occurs when internal waves reflect. (a) Ke = 10−4, Re = 106; (b)
Ke = 10−4, Re = 5000; (c) Ke = 0.3, Re = 106.

Re Ke Cr

5000 0.0001 0.34
100 00 0.0001 0.51
200 00 0.0001 0.67
500 00 0.0001 0.83
100 000 0.0001 0.92
100 000 0.0015 0.91
100 000 0.02 0.90
100 000 0.3 0.82

Table 2. Reflection coefficients for the different Keulegan and Reynolds numbers.
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Figure 4. The reflection coefficient approaches unity with an increasing Reynolds number; α = 45,
β = 10, Ri = 2, Ke = 0.0001, Pr = 7.

α β Ri ω/ωc Cr

40 10 2.4 3.70 0.90
40 15 2.4 2.48 0.69
40 20 2.4 1.88 0.58
40 25 2.4 1.52 0.35
45 10 2.0 4.07 0.85
45 15 2.0 2.73 0.78
45 20 2.0 2.07 0.64
45 25 2.0 1.67 0.57
45 30 2.0 1.41 0.40
50 10 1.7 4.41 0.78
50 15 1.7 2.96 0.82
50 20 1.7 2.24 0.74
50 25 1.7 1.81 0.57
50 30 1.7 1.53 0.40
50 35 1.7 1.34 0.22

Table 3. Reflection coefficients for the different frequencies; Ke = 1.0× 10−4, Re = 2.5× 104.

is the ratio between the energy flux density of the reflected waves and the incident
waves. Here pi and qi are the pressure and normal velocity along the incident ray and
pr and qr are the pressure and normal velocity along the reflected ray. The present
results show that the reflection coefficient increases with decreasing Keulegan number
and increasing Reynolds number (table 2), and approaches unity (figure 4) as linear
and inviscid conditions are approached.

3.1.3. Bottom slope effect on the reflection coefficient

To illustrate the effect of the bottom slope on the reflection coefficient we performed
the simulations for the range of 1.34 6 ω/ωc 6 4.4 (table 3) with constant values of
Re = 25 000 and Ke = 0.0001. At the critical frequency (ω/ωc = 1) the incident
wave energy is trapped in the boundary region and the reflection coefficient is zero
(figure 5). In this case, the reflected rays propagate along the sloping boundary. As
the angle of the incident rays to the horizontal increases, the angle of the reflected
rays to the sloping boundary also increases until the ray reflects back into the incident
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Figure 5. The reflection coefficient increases by departure from the critical frequency and
approaches unity at ω/ωc = ∞. (a) α = 40, (b) α = 45, (c) α = 50.
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Figure 6. As the angle of the incident rays to the horizontal increases, the angle of the reflected
rays to the sloping boundary also increases until the ray reflects back into the incident ray.

ray. It follows that (figure 6)

α+ β = α− β, π− [(α+ β) + (α− β)] = 0, (3.2)

so that

β = 0, α = π/2. (3.3)

This is the reflection from a flat bottom, and is expected to be unity for the linear
case. The reflection coefficient increases by departure from the critical frequency and
approaches unity at ω/ωc = sin (α)/sin (β) = sin (π/2)/sin (0) = ∞ (figure 5).
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Dissipation Dissipation
α β Ke Re equation (1.17) numerical results

40 10 1.0× 10−4 2.5× 104 0.12× 10−13 0.14× 10−13

40 15 1.0× 10−4 2.5× 104 0.44× 10−13 0.46× 10−13

40 20 1.0× 10−4 2.5× 104 0.90× 10−13 0.89× 10−13

40 25 1.0× 10−4 2.5× 104 1.21× 10−13 1.23× 10−13

45 10 1.0× 10−4 2.5× 104 0.24× 10−13 0.25× 10−13

45 15 1.0× 10−4 2.5× 104 0.52× 10−13 0.51× 10−13

45 20 1.0× 10−4 2.5× 104 1.05× 10−13 1.08× 10−13

45 25 1.0× 10−4 2.5× 104 1.60× 10−13 1.62× 10−13

45 30 1.0× 10−4 2.5× 104 1.76× 10−13 1.78× 10−13

45 10 1.0× 10−4 1.0× 105 0.22× 10−13 0.25× 10−13

45 10 1.0× 10−4 5.0× 104 0.42× 10−13 0.41× 10−13

45 10 1.0× 10−4 2.0× 104 0.77× 10−13 0.75× 10−13

45 10 1.0× 10−4 1.0× 104 0.98× 10−13 0.95× 10−13

45 10 1.0× 10−4 5.0× 103 1.02× 10−13 1.00× 10−13

45 10 1.5× 10−3 1.0× 105 5.01× 10−12 5.05× 10−12

45 10 2.0× 10−2 1.0× 105 9.97× 10−10 9.95× 10−10

45 10 3.0× 10−1 1.0× 105 3.62× 10−07 3.45× 10−07

50 10 1.0× 10−4 2.5× 104 0.55× 10−13 0.59× 10−13

50 15 1.0× 10−4 2.5× 104 0.91× 10−13 0.93× 10−13

50 20 1.0× 10−4 2.5× 104 1.59× 10−13 1.55× 10−13

50 25 1.0× 10−4 2.5× 104 2.36× 10−13 2.33× 10−13

50 30 1.0× 10−4 2.5× 104 2.59× 10−13 2.58× 10−13

50 35 1.0× 10−4 2.5× 104 2.23× 10−13 2.30× 10−13

Table 4. Dissipation for the different numerical parameters.

In order to evaluate the average dissipation within the benthic region, we have
calculated the average dissipation using (1.17), obtained by Ivey et al. (1995), and
also using instantaneous velocity gradients for different numerical conditions; q, Cr
and instantaneous velocity gradients were obtained from the numerical results. The
numerical results confirm for the cases of incipient breaking (table 4) the relationship
suggested by Ivey et al. (1995). It is clear that the numerical dissipation was only
a small fraction (< 16%) of the physical dissipation as noted by Javam et al.
(1999b), the maximum being reached once small scales had fully formed and the flow
became three-dimensional. Based on the highest dissipation in our simulations the
Kolmogorov scale Lk is 0.017π. Cowen & Monismith (1997) showed that 99% of the
dissipation takes place within the scales greater than 5.5Lk = 0.094π, therefore the
present model with largest grid size of 0.1π is expected to be able to resolve effectively
the dominant large-scale flow features. This is of course no longer the case once full
breaking takes place at higher Reynolds number.

3.2. Wave–wave interaction

3.2.1. Evolution of the density field

Figure 7 contains a sequence of plots taken at an intermediate time depicting
the evolution of the density field with time T , where the time is in wave periods
(T = t/2π). The density field is indicated by contour lines, and regions of density
overturning (i.e. where d(ρ + ρ̂)/dy> 0) are shown as enclosed areas. As seen from
the figure the amplitude of the resultant wave, within the interaction region, increases
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Figure 7. Density contours; α = 40, β = 20, Ri = 2, Ke = 0.5, Pr = 7, Re = 25 000. Density
overturning occurs when the wave amplitude becomes large. Enclosed areas indicate regions of
density overturning. (a) t = 7.0, (b) t = 9.0, (c) t = 11.0, (d ) t = 12.35, (e) t = 13.5, (f ) t = 15.0.
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Figure 9. Spectra for density fluctuations; α = 40, Ri = 2, Ke = 0.7, Pr = 7, Re = 20 000. Higher
modes are excited, the same as wave–wave interaction.

with time until a density overturn occurs. The amplitude increase associated with
this effect is similar to symmetric wave–wave interaction (Teoh, Ivey & Imberger
1997; Javam et al. 1999b). The first overturned region is apparent near the centre
of the interaction region (figure 7d) and propagates upslope at the x-component
of the incident phase speed. With increased time (figure 7f) the motion within the
overturned regions breaks down into small-scale motions and the overall region with
overturns becomes larger.

3.2.2. Production of new modes and superharmonic instability

Density fluctuation spectra for locations inside the incoming ray, inside the outgoing
ray, and inside the interaction region were used to investigate the production of new
modes by nonlinear interactions of these rays. Density fluctuation spectra for the
locations inside the incident and the reflected rays confirm the fundamental results of
the linear theory; frequency is preserved upon reflection (figure 8).

Figure 9 shows results from the interaction region and it is clear that there was
substantial wave energy at the frequencies nω, where n = 2, 3, . . . . The n > 2
modes must be produced locally as the wave energy inside the incident ray is
only at the frequency of ω. The new modes do not satisfy the dispersion relation
and are therefore forced oscillations sustained locally by the nonlinear terms in
the equation of motion. Thus, the nonlinear non-resonant interactions between the
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(a)

(d)

(c)

(e)

( f )

(b)

Figure 10. Density contours. Close to the critical frequency the wave overturning occurs at the
wall. As α increases or decreases from the critical angle the wave overturning begins to depart from
the wall. (a) α = 50, β = 20, Ke = 0.5, t = 11.5; (b) α = 40, β = 20, Ke = 0.5, t = 12.25; (c) α = 30,
β = 20, Ke = 0.8, t = 9.25; (d ) α = 30, β = 30, Ke = 0.8, t = 5.75; (e) α = 40, β = 50, Ke = 0.5,
t = 6.75; (f ) α = 50, β = 70, Ke = 0.5, t = 12.0.

incident and reflected wave rays are responsible for transferring energy from the
forcing frequency to the higher harmonics. As the frequencies of the excited harmonics
are greater than the local buoyancy frequency N, these modes cannot propagate out
of the interaction region. The trapped energy increased with time and subsequently
lead to superharmonic instabilities identical to what was observed in symmetric
wave–wave interaction (Javam et al. 1999b; Teoh et al. 1997) and at a turning
point in a shear (Javam et al. 1999a), but quite different to what was observed
at a caustic reflection where the modes produced are subharmonics (Javam et al.
1999a).
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Figure 11. The location and size of the unstable region is determined by the amount of the energy
contributed from the incident and reflected waves. As A moves up the wall the contribution (BA)
from the incident ray and (CA) from the reflected ray both increase.

3.2.3. Location of the unstable region

The results showed that the location of the unstable region depended on the wave
frequency and slope angle. To examine this effect, simulations were performed using
different slopes and frequencies. The results are displayed in figure 10. The height of
the interaction region increased with increasing forcing frequency. Close to the critical
frequency (with zero interaction height) the wave overturning occurred near the wall.
As α was increased or decreased from the critical value, the wave overturning began
to lift off from the wall. However, as time continued the unstable region extended
down to the boundary (figure 7f). This sequence of events was also observed by De
Silva et al. (1997) in laboratory experiments.

The overturning occurred on the reflection side and propagated along the reflection
side of the interaction region. To explore the underlying reason, consider point A in
figure 11(a). Energy is contributed by both the incident and reflected rays. As the
incident wave travels the distance from B to A while the reflected wave travels from
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(a)

(b)

(c)

(d )

Figure 12. Density contours; α = 50, β = 40, Ri = 1.7, Ke = 0.35, Pr = 7, Re = 25 000. Density
overturning occurs in the upper half of the interaction region for the supercritical case. (a) t = 6.75,
(b) t = 7.0, (c) t = 7.25, (d ) t = 7.5.

C to A, it follows that the total energy contributed to an unstable region at this point
is proportional to

BA

incident raywidth
× Ei +

CA

reflected raywidth
× Er. (3.4)

In the supercritical case (figure 11), both BA and CA increased as point A moved
upslope (figure 11b; BA < B1A1 and CA < C1A1), and decreased as A moved
downslope (figure 11c; BA > B2A2 and CA > C2A2) or by lifting off from the
boundary (figure 11d; BA > B3A

′
3 and CA > C3A3). It follows that, if there is to

be sufficient energy, the overturning must occur towards the right-hand side of the
interaction region (figure 12), where the total energy contributed increases until it
becomes sufficient. The same argument can be applied to the critical case where the
overturning occurs in the middle (figure 13), and to subcritical reflection where the
overturning is towards the left-hand side of the region (figure 14).
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(b)

(c)

(d)

Figure 13. Density contours; α = 50, β = 50, Ri = 1.7, Ke = 0.35, Pr = 7, Re = 25 000. Density
overturning occurs in the mid half of the interaction region for the critical case. (a) t = 7.25, (b)
t = 7.5, (c) t = 7.75, (d ) t = 8.0.

4. Conclusion
In this paper the nature of the nonlinear processes induced by internal wave break-

ing on a sloping boundary was explored, the reflection coefficient was determined, the
distribution of the wave energy near the reflection region was examined and finally
typical dissipation values within the reflection region were estimated.

It has been shown that no phase shift occurred upon reflection from the slope and
the reflection coefficient approached unity as nonlinearity and viscosity decreased and
as the forcing frequency departed from the critical value. The nonlinear interactions
transferred energy to higher modes, with associated overturning of the density field
along the reflected wave. This mechanism of instability was similar to symmetric
wave–wave interaction (Teoh et al. 1997; Javam et al. 1999b) and instability at a
turning point (Javam et al. 1999a) but followed a totally different mechanism than
that of wave overturning induced by caustic reflections (Javam et al. 1999a) where
lower modes were produced. Close to the critical frequency, the wave overturning
took place near the wall. As α increased or decreased from the critical angle, the
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(a)
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Figure 14. Density contours; α = 50, β = 60, Ri = 1.7, Ke = 0.35, Pr = 7, Re = 25 000. Density
overturning occurs in the lower half of the interaction region for the subcritical case. (a) t = 10.75,
(b) t = 11.0, (c) t = 11.25, (d ) t = 11.5.

overturning departed from the wall and was located on the reflection side of the
interaction region.
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